

Proposed Changes to Level 3

AIRS Science Team Meeting April 15-17, 2008

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Introduction

- Background
- v5.0 Capabilities
- Science
- v6.0
 - Analysis
 - Updates

What is Level 3?

CODMAC* Data Levels			
Level	Description		
0	Reconstructed unprocessed instrument/payload data at full resolution; raw engineering measurements.		
1	Reconstructed unprocessed instrument data at full resolution, time-referenced, and annotated with ancillary information, computed and appended, but not applied, to the Level 0: processed tracking data.		
2	Derived geophysical variables at the same resolution and location as the Level 1 source data.		
3	Variables mapped on uniform space-time grid scales, usually with some completeness and consistency (observations from a single technology).		
4	Model output or results from analyses of lower level data (i.e., variables derived from multiple measurements)		

^{*} Committee on Data Archiving and Computing

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

AIRS Standard Level 3

- Spatially and temporally resampled from L2.
 - □ 1x1 degree
 - Gridded daily, 8-day and monthly products.
- Substantially lower in volume than L2.
- Easier to use.
- Enables inter-disciplinary global analysis of AIRS data.
 - Atmospheric dynamics
 - Climate variability and change
 - Hydrologic cycle

L3 Standard Product Characteristics				
Daily	8-Day	Monthly		
"complex" data, leaves in gores between satellite tracks.	"moderate" data, no gores, some data dropouts	"simple" data, no gores, mostly complete coverage.		
1°x1°	1°x1°	1°x1°		
1-day temporal resolution	8-day temporal resolution (tied to Aqua repeat cycle)	Montlhy (calendar)		

Temporal	AIRS Products		
Range	Level 2 Standard	Level 3 Standard	
Daily	4.7 MB * 240 files = 1.1 GB	73M	
8-Day	1.1 GB * 8 days = 8.8 GB	104M	
Monthly	1.1 GB * ~ 30 days = 33 GB	105M	

Jet Propulsion LaboratoryCalifornia Institute of Technology
Pasadena, California

v5.0 capabilities delivered

- L3 Standard
 - New Parameters
 - Error estimates reported for all IR parameters
 - Trace gases
 - CH4
 - CO
 - Cloud Profiles
 - Fine
 - Coarse
 - Tropopause
 - T, P, Height (meters)
 - Relative Humidity Liquid
 - Location parameter
 - Topography (DEM)
 - Topography of the Earth in meters above the geoid

80.

103.

- Source = PGS Toolkit
- New Attributes
 - Trace gas support
- L3 Quantization
- L3 Support

125.

148.

Mean CO VMR

August 2005

171.

Jet Propulsion LaboratoryCalifornia Institute of Technology
Pasadena, California

Science - Recent results

- Pierce, D. W., T. P. Barnett, E. J. Fetzer, and P. J. Gleckler (2006: Three-dimensional tropospheric water vapor in coupled climate models compared with observations from the AIRS satellite system. *Geophys. Res. Let.*, v. 33, L21701, doi: 10.1029/2006GL027060
- Tian, B., D. E. Waliser, and E. J. Fetzer (2006), Modulation of the diurnal cycle of tropical deep convective clouds by the MJO, *Geophys. Res. Lett.*, 33, L20704, doi:10.1029/2006GL027752.
- Ye, H., E. J. Fetzer, D. H. Bromwich, E. F. Fishbein, E. T. Olsen, S. L. Granger, S.-Y. Lee, L. Chen, and B. H. Lambrigtsen (2007), Atmospheric total precipitable water from AIRS and ECMWF during Antarctic summer, *Geophys. Res. Lett.*, 34, L19701, doi:10.1029/2006GL028547.

Jet Propulsion LaboratoryCalifornia Institute of Technology
Pasadena, California

Research

- Validation
 - Enables validation relative to other people's products
- Trend analysis
- Comparisons
 - ECMWF
- Models
 - Understanding of variability key to parameterization of climate models
 - Enabled via AIRS L3 standard deviation

- Cloud studies
 - □L3Q
- Societal impacts
 - GIS integration
 - Socioeconomic
 - Demographic

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

v6.0 Analysis of v5.0 L3

Bias Assessment

- Vertical sampling
 - Keep entire profile.
- Different sampling per parameter
 - H2O and T correlated, but different
 - Uniform sampling.
- QC filtering
 - Surface Skin Temperature
 - Biased cold relative to NCEP
 - T profiles
 - Vertical lapse rate between 300 and 500 hPa
 - Day, night: diurnal difference
 - Clouds
 - Water Vapor
 - Comparisons with L3 ECMWF (monthly, octads)

Liens - Bias characterization

Level 3 Working Group (Fetzer, Braverman, Manning, Granger)

- Sampling Issues
 - Representativeness
 - Sampling bias
- Alternative methods of binning/gridding
 - Asynoptic mapping (Salby's method)
 - Cloud fraction
 - Cloud type
- Filling missing regions in the monthly product
 - Climatology
 - Fill (Level 4)

Liens - Bias Characterization

Sampling Issues

- Always have sampling bias
 - Best to characterize (measurement determined)
 - First step T and WV characterization
 - WV helps to understand O3 and minor gases
- Part of validation
 - Comparisons to correlative sources

Liens - Bias Characterization

Alternative methods of binning

- Simple binned average
- In-line w/other EOS gridded products (e.g., MODIS)
 - "no single, sophisticated gridding algorithm that satisfies every user's need" (QuickSCAT L3 document)
- Known problems
 - Temporal variation ignored (spatial-only)
 - Data gaps (holes)
- Possible solutions
 - Kalman filtering
 - Computationally intensive
 - Code in-hand
 - Salby's method
 - Computationally intensive
 - Variation implemented for UARS-MLS
 - Not well suited for water vapor from instruments at varying times.
- Conduct trade-off study

Jet Propulsion LaboratoryCalifornia Institute of Technology
Pasadena, California

Proposed New/Updated Products

- L3 Standard
 - Extend L3 Standard for new L2 products
 - O3
 - Profiles
 - Levels TBD
 - IR Emissivity
 - Higher resolution
 - More channels
 - CO (Higher resolution)
 - Match climate observables
 - Monthly mean cloud ice fraction
 - Cloud fraction & cloud top temp using ISCCP definitions
 - Gridding
 - Artifacts
 - Polar regions
 - Pseudo Equal-Area gridding in polar regions
 - Bi-directional reflectivity
 - Feature over ocean

- L3 Quantization
 - Clouds
 - Surface emissivity
 - Minor constituents
 - Cluster co-variance matrix
- L4 products
 - Climatology
 - Gaps filled via TBD method

Jet Propulsion LaboratoryCalifornia Institute of Technology
Pasadena, California

Thank you

Questions?